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Abstract. We determine equilibrium crystal shapes for a triangular lsing model with 
isotropic nearest-neighbour interactions. At zero temperature the shape is an equilateral 
hexagon for ferromagnetic interactions, and an equilateral triangle for antiferromagnetic 
interactions in the presence of a weak field, H S 2J. When the magnetic field is increased 
beyond 25 the shape vanes continuously with the field, in the form of a hexagon with 
three-fold symmetry. For still higher fields, H 345 ,  the shape is again an equilateral 
triangle, now oriented 77/3 relative to low-field crystals. Finite-temperature shapes are 
determined by means of a solid-on-solid calculation of the orientation-dependent interfacial 
free energy. 

1. Introduction 

Under thermodynamic conditions that allow two phases to coexist the question of the 
average equilibrium shape of a large inclusion of one phase (e.g. a crystal or a droplet) 
in the background of another is an old problem which goes back to the turn of the 
century (Wulff 1901). The difficult part of the problem is to calculate the interfacial 
free energy per unit length (the surface tension) as a function of the orientation of the 
interface. From this the shape of the inclusion can be determined directly by the Wulff 
construction (see Rottman and Wortis 1984a for a review). The problem has received 
considerable attention recently (Rottman and Wortis 1981, 1984a, b, Zia and Avron 
1982, Avron et a1 1982), partly because exact results for all temperatures are available 
for the two-dimensional square lattice Ising model. 

In this paper we report on an investigation of equilibrium shapes for a triangular 
Ising model. This model can be used to describe shapes of magnetic domains in a 
two-dimensional magnet and equilibrium shapes for adsorption of particles on a 
surface. For attractive (ferromagnetic) nearest-neighbour interactions equilibrium 
shapes have sixfold symmetry due to the sixfold symmetry of the underlying lattice. 
We are, however, interested in the repulsive (antiferromagnetic) case. In a non-zero 
magnetic field this model has a triply degenerate ground state. We study the shape of 
a large inclusion of one of these phases in the background of another. 

The results are interesting and unexpected. At zero temperature there exist three 
regions for the magnetic field strength H, a low-field region 0 < H G H I ,  an intermediate 
region H ,  < H < H2 and a high-field region H2 s H < 65. In the low-field region the 
shape of the inclusion is an equilateral triangle with sides oriented orthogonal to the 
lattice directions, in the intermediate region the contour is a hexagon with threefold 
symmetry and field-dependent shape, and in the high-field region a triangular shape 
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again appears, now rotated by 7r/3 with respect to the low-field triangles. The same 
effects are visible at non-zero temperatures, now in domains with smoothly curved 
contours. 

The outline of this paper is as follows. In § 2 we present the exact analysis at T = 0. 
The low-temperature expansion of the interfacial free energy is discussed. To obtain 
the orientation dependent finite-temperature free energy we take in § 3 recourse to a 
solid-on-solid approximation. At low temperatures the resulting free energy should 
constitute an excellent approximation to the exact results. The equilibrium shapes are 
obtained via the Wulff construction. 

2. Zero-temperature results 

2.1. The Wulf construction 

The equilibrium shape of an inclusion of one phase in an environment of another is 
obtained by applying the Wulff construction. Specifically, assume that the surface 
tension, U ( ; ) ,  for an interface orthogonal to n*, is known. Draw a polar plot of U ( $ )  

and at each point on the curve draw a straight line perpendicular to the radius. The 
inner envelope of these lines defines the equilibrium shape of the inclusion. (Adjust- 
ment to the actual area is obtained by a multiplicative factor.) 

A kink in the polar plot produces a facet (straight boundary) on the inclusion. 
Since the interface here is a one-dimensional object this happens only at zero tem- 
perature. 

2.2. The model 

The Hamiltonian has the form 

2 = J s,s, - H s, 
( V I  I 

with J >  0 and s, = k l .  The sums run over nearest-neighbour pairs, and all spins, 
respectively. By symmetry it suffices to consider positive external magnetic fields, H > 0. 

In the ground state the minus spins populate any one of the three sublattices, the 
plus spins the two other sublattices. The degeneracy is therefore three. Figure 1 shows 
an inclusion of one of these phases in the background of another. The region of the 
temperature-field plane where the phases are stable is also indicated. 

The triangular lattice by itself has six symmetry axes, parallel and orthogonal to 
the lattice directions. The selection of two out of three phases reduces the number of 
symmetry axes to three, namely those orthogonal to the lattice directions (see figure 
1).  Hence the surface tension will have this reduced symmetry. 

2.3. T =  0 behaviour 

At zero temperature the surface tension, U ( &  T ) ,  is simply the minimum energy per 
unit length required to make a macroscopic interface perpendicular to 6. 

Let us start by giving the values of the surface tensions for interfaces along the 
symmetry directions, i.e. perpendicular to the lattice directions. The two different 
interfaces are shown in figures 2 and 3 ,  and for each direction the interface comes in 
two different versions, depending upon the value of the magnetic field. Simple counting 
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H /J 

Figure 1. A small inclusion. Note that the plus spins (open circles) on one sublattice can 
be considered as belonging to either phase. The part of the H -  T plane where the three 
phases are stable is indicated by the hatched area in the diagram on the right-hand side 
(Kinzel and Schick 1981). 

. 
la I i b )  

Figure 2. The interface a. When 0 < H < 45  the energy minimum is obtained as shown in 
( a ) .  This is a ‘heavy’ domain wall (Kardar and Berker 1982. Huse and Fisher, 1982, 1984, 
use a slightly different nomenclature.) When 45  < H < 65 it pays to flip one minus spin 
in every pair of neighbouring minus spins, as shown in ( b ) ,  forming a superlight’ domain 
wall. Notice the entropy connected with the latter interface since some +/- pairs, indicated 
by the arrows, can flip without energy cost. The degenerate interface may be conceived 
of as consisting of segments in the p direction alternating with segments running in the 
vertical direction (‘light’ walls). For the case when the two arrow-marked spin-pairs are 
flipped this interface representation is shown as the dotted line. 

, 

, ’  

la1 

, 

, 

Figure 3. The interface p. The version ( a )  is for low fields. As in figure 2 ( b )  an extensive 
entropy is again involved. The ‘superheavy’ domain wall (broken) may break up into 
‘heavy’ segments as indicated by the arrows and the dotted line. For H > 25 it pays to 
turn every other minus spin along the interface. The latter interface, a ‘light’ domain wall, 
is non-degenerate. 
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gives 

J-Zu, = 4 J  -fH - / H  - 4JI 

and 

(3) 

Notice the symmetry around H = 35 

~ p ( 6 J  - H )  = u,(H). (4) 

We let 8 denote the angle between the direction of the interface and the horizontal 
lattice direction in figures 2 and 3. Symmetry allows us to consider values of 6 limited 
to the angular interval (-77/6, .rr/6). 

In the present case with merely nearest-neighbour interactions there are several 
microscopic minimum-energy interfaces for a given macroscopic interface between 
two points A and B a distance L apart (figure 4), corresponding to a finite zero- 
temperature entropy (see $ 2.4). In figures 2(b) and 3 ( a )  we have indicated examples 
of how by flipping spin pairs one may shift the microscopic interface without changing 
the interface energy. Moreover, figure 4 (a )  shows the nature of the collection of 
step-like microscopic interfaces which all yield the same minimum energy. In this 
section we find these minimum-energy interfaces by inspection, but the results for the 
minimum energy itself and the degeneracy (the entropy) can be verified by taking the 
low-temperature limit of the interface free energy calculated in $ 3 from the partition 
function. 

Figure 4. Examples of microscopic minimum-energy interfaces from A to B, with macro- 
scopic length and orientation L and .4 respectively, ( a ) .  The fully drawn interface refers 
to the intermediate field region, the broken interface to the low-field region, and the chain 
interface to the high-field region. The microscopic interface from A and B is confined to 
the parallelograms shown for the three field regions in ( b ) .  The horizontal lines runs in 
one of the lattice directions. 

It is convenient to calculate the free energy of the interface between A and B by 
using one special microscopic interface, namely one that first progresses a distance L, 
in the direction p and then a distance L, in the direction a (figure 4(b)). With the 
results ( 2 ) ,  (3) for the surface tensions in these directions we have 

(5) U = (a,L, + U&)/ L. 

Simple geometric considerations give 

L, = $JJ[sin(t.rr - e ) ] ~ ,  L, = $JJ[sin(b.rr+ e ) ] ~ .  (6) 
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Hence the angle-dependent interfacial energy, a( 0,O) is given by 
- 

4 3 4 0 ,  0) = 2a ,  sin& - e) + 20, sin& + e )  (7)  

for 1 0 1  sin.  
Wulff constructions are shown in figure 5 .  (Note that the direction 6 of the surface 

tension a( n, T ) ,  the input in the Wulff construction, is by definition orthogonal to the 
interface.) For all temperatures the change of roles of the including and the included 
phase (i.e. letting the lower phase in figures 2 and 3 be the included phase) amounts 
to a change of signs of the angles, or equivalently, a rotation of the inclusion by l r /3  
(see figures 2 and 3) .  At zero temperature a similar rotation is also induced by replacing 
the magnetic field H by 6J - H. 

H 5 2 1  H = 2 5 J  

Figure 5. Wulff constructions for T = 0. The outer curves are the interfacial free energy 
a(fi, 0). The inner lines are the corresponding equilibrium shapes obtained by the Wulff 
construction. The lattice directions are defined by the three intersecting lines. 

For low fields, H < 25, cr, = 2aa and consequently the shape is field independent. 
The resulting form is a triangle which only uses the minimum energy directions a. 
The energy difference, up - aa, is so large that it does not pay, for a given area, to 
make the total interface shorter. In the interval 25 < H < 45  the ratio up/a,  is smaller, 
and field dependent. The inclusion has now, as shown in figure 5 ,  a hexagonal form. 
Only at H = 3 J  is the hexagon equilateral. The ratio between the lengths of the facets 
is 

p =(45- H ) / ( H  - 2 5 ) .  (8) 
For H > 45 the directions a and p exchange roles compared with the low-field region, 
as is evident from the symmetry relation ( 4 ) .  The equilibrium shape is again triangular, 
but the triangle is rotated by l r /3  with respect to the low-field triangles. 

2.4. Low-temperature expansion 

If gJL ,  0 )  is the number of ways an interface, of macroscopic length and orientation 
L and 0, respectively (see figure 4 ) ,  can be constructed with a minimum energy Eo, 
then the low-temperature surface tension is 

cr(0, T ) =  - ( k T / L )  In[goexp(-Eo/kT)] 

= ( E o  - kT In go)/ L, ( 9 )  

up to exponentially small terms. Here k is the Boltzmann constant. 
Since the microscopic interface consists of alternating segments running in one out 

of two directions (see figure 4 ( a ) )  the degeneracy go is simply the number of ways 
one can select N, = La/& steps in one direction and Nb = L,/& steps in the other 
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direction. Hence the degeneracy is given by the combinatorial factor 

One sees from figure 4(b)  that La = L, and Lb = L, in the intermediate field region, 
while L, = L,  + L, and Lb = L, in the low-field region, and La = La and Lb = L, + L, 
in the high-field region. This gives, up to exponentially small terms, the low-temperature 
expansions: 

4 6 ,  T ) =  a (6 ,O)+$kT{s in (x /6+6)  In[sin(x/6+6)]+cos 8 In(cos 6) 

-45 sin( x / 3  + 6) ln[J? sin( x / 3  + e)]} ( 1 1 )  

for H <2J,  

o(6, T ) =  o ( 8 , 0 ) + t k T { s i n ( x / 6 + 6 )  l n [ s i n ( ~ / 6 + 6 ) ]  

+ sin( x / 6  - 6)  In[sin( x / 6  - e)] - cos 6 In(cos 6)) (12) 

for 2 J  4 H s 4J, and 

4 6 ,  T ) = a ( 8 , O ) + t k T { s i n ( x / 6 - 6 )  ln[sin(x/6--6)]+cos 61n(cos 6)  

-h sin( x / 3  - 6) l n [ h  sin( x / 3  - e)]} (13) 

for H > 4J. 

will be discussed below. 
The relevance of the first-order terms in ( 1  1 ) - (  13) for the finite-temperature shapes 

3. Finite temperatures 

To investigate finite-temperature effects we have applied a solid-on-solid approximation 
to the interfacial free energy. Thus we only consider interface configurations without 
overhangs and  without islands of different states within the opposing phases. We also 
discard the possibility of the third phase intervening at the interface. (For a discussion 
of the solid-on-solid approximation for the square lattice, and for references, see Zia 
and Avron 1982.) 

The configurations used are illustrated in figure 6, and can be characterised by a 
set of integers, { k , ,  I,, m,, n!} ,  representing the number of overturned spins in each 
column, relative to a reference interface. Since the magnetisation of one of the 
sublattices is equal in the two phases under consideration, only nearest-neighbour- 
column height di’erences enter the energy expression: 

N / 3  

I =  I 
E({k,, 1,, m,, n l ) )  = c [ E , ( / ,  - k, )+  E2(m,  - I , ) +  E3(n,  - mj)+ EI(k ,+ ,  - nl) l  (14) 

where N is the length of the projection of the interface onto the 6 = 0 axis, in units 
of the lattice spacing, and  
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Figure 6. A typical interface configuration. The interface shown can be characterised by 
the set of integers { k , ,  I , ,  m,, n,, k 2 ,  I,) = {2, -1 ,O ,  I ,  0.0). 

and 
E , ( S ) = E , ( S + I ) .  

The field energy contributions have been judiciously distributed to secure convergence 
over the whole field range O <  H < 6 J  in the evaluation of the partition function. 

The partition function is 

where {Si} is a set of height differences, and /3 = 1/ kT. The 'chemical potential' p 
regulates the macroscopic direction with the mean value of the interface angle given by 

(19) tan 6 = - h N - ' ( a / a p )  In Z. 

The free energy per unit length of the interface is given by 

No(  0, T )  = -kT cos 6 ( l +  p a/ap) In Z 

= -kT(cos 6 In Z+$p sin 6). (20) 
The evaluation of the partition function amounts to summing geometric series, with 

the result 
In z = f~ In( t I  t 2 )  (21) 

with 

t' = sinh($h - ip)+s inh(4K - $ h + f p )  

sinh 2K 

cosh4K - ~ 0 s h ( 4 K  - $ h + p )  

t ,  = 
cosh 2K - ~ 0 s h ( 2 K  -3h - p )  

where K = PJ  and h = PH. 
Hence, if one defines 

d ,  = (a/ap) In ti, (23) 
the angular dependence of the free energy is determined by elimination of p between 
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the two equations 

tan 0 = - $ h ( d ,  + d,) 

a / J =  -(2cos 8 1 n ( t , t 2 ) + J 3 p  sin 0 ) / 3 K .  

Notice that (24) is symmetric under. the transformation 

H + 6 J - H ,  I ”+ - I4  o + - e  (25) 

which implies that the shape of an inclusion at  a field 6J - H is identical with the 
shape at a field value H ,  the only difference being a rotation by 7r/3. This symmetry 
is exact at zero temperature (see (4) and (7) ) ,  but the exact free energy is not expected 
to have this symmetry since this would lead to the phase diagram being symmetric 
around H = 3 J  which it apparently is not (Kinzel and Schick 1981). We expect that 
a solid-on-solid type approximation that takes into account configurations with the 
third phase intervening at the interface would do away with the symmetry (25). 

In contrast to the exact free energy (24) is not symmetric around the 101 = 7r/6 axes. 
We have cured this by using (24) in the angular interval ( - 7 r / 6 ,  n / 6 )  around the 
horizontal direction where the solid-on-solid approximation is expected to be best, 
and enforcing the symmetry. The differences between the two versions are small near 
the symmetry axes, 181 = 7r/6,  as long as one is not close to the critical region. In an  
approximate theory, like the present one, the temperature at which the interfacial free 
energy vanishes, will in general depend on the direction. Severe critical shape distor- 
tions will inevitably result. The exact free energy, on the other hand, approaches the 
isotropic scaling form. 

From the examples of equilibrium shapes shown in figures 7-9 we notice that the 
shapes become very nearly circular already when the temperature is raised to the value 
T = 0.755/ k, about half of the maximum critical temperature. We expect the solid-on- 
solid approximation to be very good up to this temperature range. In this connection 
let us mention that by taking the low-temperature limit of the solid-on-solid result (24) 
one can show that the low-temperature expansions ( 1  1)-( 13) are exactly reproduced. 
Notice also from the figures that the free energy in the directions where it is minimal 
changes very slowly with temperature as long as the anisotropies are not small. This 
is also borne out by the low-temperature expansions ( 1  1)-( 13) since the derivative, 
with respect to the temperature, of the free energy is zero in these directions. 

( b )  

Figure 7. Interfacial free energy ( a )  and equilibrium shapes ( b )  at different temperatures 
in the magnetic field H = 2J. The temperatures are 0 (outermost curves), 0.2, 0.5 and 0.75 
(innermost curve), in units of J / k  The values of the angle B are indicated in ( a ) .  The 
three intersecting lines in ( b )  define the lattice directions. 
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(01 ! b )  

Figure 8. As figure 7, but in the magnetic field H = 
2.55. 

Figure 9. As figure 7, but in the magnetic field 
H = 3 J .  

4. Concluding remarks 

We have shown, for a two-dimensional model, the existence of characteristic magnetic 
fields H,, H2,  at which qualitative shape changes take place at low temperatures. At 
zero temperature these changes are genuine 'shape transitions', with discontinuities in 
the number of facets. 

There is every reason to believe that similar subcritical shape transitions occur 
under more general circumstances. In three dimensions these transitions are expected 
to extend to finite temperatures. 
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